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ABSTRACT

Using the simple observation that programs are identical to data, programs alter
data, and thus programs alter programs, we have constructed a self-programming system
baseu on a parallel von Neumann architecture. This system has the same fundamental
property as living systems have: the ability to evolve new properties. We demonstrate
how this constructive dynamical system is able to develop complex cooperative
structures with adaptive responses to external perturbations. The experiments with this
system are discussed with special emphasis on the relation between information
theoretical measures (entropy and mutual information functions) and on the emergence
of complex functional properties. Decay and scaling of long-range correlations are
studied by calculation of mutual information functions.

INTRODUCTION

A fundamental feature of living organisms is the ability to compute, or process,
information. Information processing takes place over a wide scale of complexity, rangir.g
from the simple processes by which an enzyme recognizes a particular substrate
molecule, to complicated feedback regulations containing many different levels of
information processing, to the extremely complex processes of the human brain.

An example of biological information processing in a feedback loop is provided
by one of the negative feedback loops described by Sturis et al. (1991) in their model
of oscillatory insulin release. The feedback control can here be divided into at least
four different components: (i) an increased amount of glucose in the plasma stimulates
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insulin production in the pancreas and secretion of insulin into the plasma; (ii) from
the plasma, insulin diffuses into the interstitial fluid: (iii) here insulin molecules attach
to receptors on the surface of the cell; and (iv) insulin activated receptors enhance the
uptake of glucose by the cells, which, of course, implies a decrease in glucose outside
the cells.

This loop involves simple biochemical information processing such as the
recognition of receptors by insulin molecules and the subsequent attachment of the
molecules. In addition, there is information processing involved in the active
transport of glucose over the cell membrane facilitaied by a cascade of conformational
changes in the cell membranes protein molecules.

The most complex kind of biological information processing is probably th.e
abstract and creative symbolic information processing in the human brain. Simple
aspects of these processes are subjects of numerous investigations. In particular a
variety of models of artificial neural networks have recently been proposed (see for
example Palmer 1988, and Touretzky 1990).

The theoretical foundation of information processing in man-made machines can
be described in terms of computation theory (Hopcroft and Ullman 1979). In computa.
tion theory, a number of different formalisms exist, of which the Turing machine (TM)
for historical reasons is the most well-known. The Turing machine has been examined
thoroughly by mathematicians and computer scientists because it is believed to be able
to perform the most general type of computation, universal computation. This
conjecture is known as the Church-Turing thesis (Hopcroft and Ullman 1979).

Besides Turing machines, several other systems have been shown to support
universal computation, including cellular automata, the X-calculus, Post systems, the
hard billiard ball computer, general recursive functions, classifier systems, partial
differential equations, von Neumann machines, and even C* maps of the unit square
onto itself. It has been shown that each of these formalisms is equivalent, since any one
of them can simulate any other.

The information processing found in biological systems seems to be different in
nature from that of a Turing machine. In fact, none of the above mentioned
computational paradigms capture the full spectrum of biomolecular information
processing. A fundamental property of computation in biomolecular systems arises from
their ability to alter or program themselves. Self-programming occurs at all times and

length scales in biomolecular systems.
Although the above mentioned computational systems in principle can program

themselves, this capacity has never been studied or used. It is known that any of the
uruversal systems have the following properties: (I) the ability to store information,
(1) the ability to communicate information, and (I1I) the ability to perform non-trivie
al information processing. These abilities are also found in the living cell, although
they are more difficult to classify, However, using the same scheme to discuss ele-
ments of biomolecular computation, we obtain:



(1) Storage and memory abilities: (1) single molecules, e.g. DNA and proteins, and
(2) assembly/disassembly of supramolecular structures, e.g. the cytoskeleton and the cell
membra..c.

(I1) Signal abilities: (1) diffusion (passive transport of materials, energy, and
information) occurs everywhere in the cell, (2) active transport (non-specific
(convection) and specific transport of materials, energy, and information) convection
occurs in the cytoplasm and specific transport occurs for example over the cell
membrane and along the microtubules, (3) conformational changes (transfer of energy
and information), e.g. of dynein and kinesin in relation to cilia mobility, and (4)
electromagnetic irradiation (transfer of energy and information), e.g. photochemical
processes in chlorophyl.

(IT1) Transformation abilities: (1) chemical reactions - often using signal molecules
as reactants to produce new signal molecules as products or using signals which act as
catalysts or triggers, and (2) transcription of DNA to RNA and translation of RNA into
protein molecules which fold up and act as constructive and regulatory units in the cell.

From this scheme it should be obvious that most fundamental biomolecular
processes can be interpreted in terms of computation. These biomolecular processes
are all coupled through a very complex network of functional interactions about which
we only know certain details and in which the overall bauplan is still a mystery. The
cell continuously programs and re-programs 1tself, and in multicellular organisms this
self-programming also occurs at the organism lecvel (recall the discussion of the
feedback loop controlling insulin release).

Living systems can through a re-programming of some of their parts alter
functional properties which are of vital importance for survival. Viewed over longer
time scales this self-programming ability is also used to crcate new properties which are
incorporated through the selection process of evolution. Since any computational
universal system, in principle, is able to program itself, we shall modify one of them so
that we can study self-programming as a phenomenon in a much simpler and more
tractable system. We have chosen to modify the parallel von Neumann architecture,
The modified von Neumann machine (MVNM) is easy to program since most modern
digital computers are based on the von Neumann principle, and since the autonnmous
dynamics of such a system even at its lowest level (one single instruction) has a clear
computational interpretation. We shall in the following focus on the emergence of new
functional properties in MVNM's which most clearly reflect the evolutionary aspect of
biocomputing.

SELF-PROGRAMMABLE MATTER

We can in general terms define self-programmable matter as a dynamical system
of functional interacting elements, or compositions of elements, which through



autonomous dynamics can develop new compositions of functionally active elements.
Such systems are characterized by an ability to construct novel elements within
themselves. Thereby chemistry by definition becomes a particular kind of self-
programmable matter. The physical properties (e.g. shape and charge) of the chemical
species define the possible interactions with other molecules and thereby their
functional properties. Chemical systems create new properties through recombination
of molecules via chemical bonds. New combinations between existing molecules and
combinations of new molecules with other molecules then define new functional
properties. This defines a constructive or self-programmung ioop given by:
molecules + physical properties ~ functional properties = interactions = new molecules.

As an example of a self-programming '
system, we have defined a modified von Neu-

. . Non-executable statement.
mann machine, called Venus. It consists of a Terminate the process

one-dimensional memory array, called the fu“:'de?gy::‘rf:"'ﬁf}f“be

core. This corresponds to the RAM (random MOV A.B | Copy the conteats of A (o B.
access memory) in a modern digital computer. ADD AB | Add tbe conteats of A to the
Each element of the core, a word, contains a conteots of B and save the
machine code instruction. There are 10 result in B.
different instructiozs, which are listed in § SUBAB fr‘;i"a".:’: f;'t;‘:’rzm‘ o
Table 1. An instruction has three elements, an B.
opcode and two fields, A and B. Each field JMP A | Move the pointer to A.
consists of an addressing mode and a numeric | JMZ A,B | If B equals zero, move the
field, the latter containing a non-negative pointer (0 A,
integer. There are four different addressing [ ‘MNAB :{?Pfg::: l’?:‘ Zer0, move
modes, as shown in Table 2. DIN A,B | Decrement B, and if B differs
Many programs simultaneously execute from zero, move the pointer
instructions in the core. A monitor-like A . .
function always discovers whenever two or CMP AB :‘e: ﬂ:;:.{;?ei .::v:hlehe
more instructions simultaneously try 1o obtain pointer two steps abead

write access to the same core addresses. instead of oe.
SPL B | Create a new process at the

Thereby, write conflicts are resolved. sddress pointed 1o by B.
The model has several features which

Table 1.

are not found in ordinary mult-tasking

VNM's. One of the major differences is the presence of noise in our system. The task
of an ordinary VNM is 10 perform very specific calculations, detailed via programs
written by human subjects either in machine code or in a high-level language such as
FORTRAN or C. In the presence of noise, most programs, e.g., ordinary differential
equation solvers or bookkeeping programs, would crash or give more or less
meaningless outputs. This is contrary to the computations in biological systems in which



noise usually has a very limited effect. One notion of noise in Venus is built into the
execution of the MOV instruction. When the MOV instruction (see Table 1) copies a
word, something might go wrong, and the word written to the memory can be altered.
This is the reason why ordinary programs have a hard time executing properly. Such
routines rely on perfect copying of data. There is an additional source of noise that
drives our system. Once in awhile a random pointer is appended to the execution
queue. Since processes can terminate by executing the DAT instruction, we make sure
the system is supplied with pointers via this stochastic mechanism. The mutation fre-
quency is one per 10° copyings, and a pointer is appended to the execution queue ap-
proximately every twentieth generation. A mutation of a machine code program always
vields a new legal program, as opposed to a change in a high-level language, which al-
most certainly will result in a syntax error.

The Venus system also incorporates a | ApDDRESSING EFFEC.IVE
notion of computational resources. This pre- MODE OPERAND
vents the simultaneous execution of too many ’ The effective operand is
processes both in totzl and within a limited | (im:ediate) %;"&‘;:Pif&g'v
spatial addressing area. The first limitation is #3,.., has the effective
expressed in terms of an execution queue of operand 3: :
fixed length, which in all the simulations tobe | (gbg) |1 cheaive operand 4
discussed were of size 220. The execution the valug in the data

. field. Example: MOV
queue contains the addresses of the $2,. , bas tbe effective
instructions to be executed. The second operand located two
e . words towards increasing
limitation is due to address-localized compu- addresses.
tational resources, which are measured in @ The effective operand is
fractions of one execution. Each address in (indirecr) | found by looking et the

. , . . data field pointed to by
the core y is at any time ¢ associated with a the actual dara field, zod
certain fraction r(t,y) of one execution. This :;:e“'““ the direct
value is lncrer.nented by a fixed amount A at < As ‘ndirect, only the
each generation. However, the value can | (autodecrement |value pointed to by the

indirect) actual data field is

neve.r exceed some constant predefined decremented before being
fraction r,  of one execution. When the used.

systemn executes a pointer from the execution Tgple 2.
queue, it looks to the addresses in the im-
mediate neighborhood of the pointer and finds the sum of computational resources. If
this sum exceeds one, then the instruction will be executed. If not, the pointer will dis-
appear. The resource radius R,,, defining the immediate neighborhood is three in all
simulations.

Instructions are only allowed to communicate, ¢ g. to read and write data, locally.
The allowed distance for read/wriie access is 800 in all simulations. However, in
contrast with normal multi-tasking VNM’s, all processes can overwrite anything in their
neighborhood, as long as it does not occur simultaneously with other processes. This



means that there is no notion of individual work space or, in biological terms, there are
no predefined "proto-organisms"” (cellularity).

Initializati Y

In all simulations, the system has been initialized randomly by a uniform
distribution of opcodes, addressing modes, and data fields. Previous studies showed that
the system can only evolve simple structures from a uniform distribution (Rasmussen
et al. 1990). One can increase the complexity of the dynamics of the system greatly by
supplying some kind of biasing of the initial core. In other words, we need to supply
the system with a reactive potential, in the sense that the different macnine code
instructions need to be inhomogeneously distributed in the core to enhance many
spontaneous computations. This potential is conveniently introduced by placing a self-
replicating program in the randomly initialized core. This program has a replication
cvcle of 18 generations and will very quickly produce a considerable number of
offspring, all of which will attempt to replicate unless they have been modified by noise
or have been overwritten. As mentioned earlier, most programs designed to work in a
noise-free environment very quickly crash by making erroneous copies. Another way in
which these programs begin to malfunction is by copying on top of other offspring,
which eventually happens since the core has a limited size, 3,584 addresses in the
simulations to be discussed. By using our interactive graphics simulator, we have
determined the lifetime of a well-functioning population of self-replicating programs to
be around 200 generations. After this, no copies of tne original programs are left. Only
mutated versions with different functional properties are found. It is important to notice
that the effect of the self-replicating program is a good mixing of instructions, and not
a probing of the system with self-replicating properties. The last bit of this sophisticated
self-replication is gone after 200 generations.

An alternative and conceptually more satisfying method for supplying the system
with a reactive poteniial is to generate a random core by using a set of coupled Markov
matrices. This approach is current!:' being investigated (Rasmussen et al. 1991).

Experimental Results

In the simulations with Venus, many diiferent evolutionary paths have been
observed. Typically, after extermination of well-functioning self-replicating programs,
the system enters a phase in which massive copying of one or more instructions takes
place. In the beginning, this is mainly caused by the copying Irops of the former self-
replicating programs. Typically such a partiaily malfunctioning loop will move copies
of a single word out into the vicinity of the loop. As a result, large areas of the core
will be filled with a single word, with unaltered opcode, amode, afield, and bmode, but
possibly different bfields. This runaway process introduces a kind of sensitive
dependence on initial conditions, as known from chaotic dynamical systems. However,



after some generations the copying loops are destroyed, either by noise or by MOV
instructions overwriting them. This signals the beginning of a new epoch for the system.
From this point on, the dynamics of the core is governed by large coherent groups of
single instructions of sizes ranging from one word to several hundred words. This is in
strong contrast to the dynamics in the first phase of the evolution, in which relatively
few instructions placed in the self-replicating programs were responsible for the
dvnamics.

Naturally, the further development of the core depends heavily on the distribution
of opcodes at this point. The distribution of opcodes is determined by the instruction
copying, and therefore from this point on we see different evolutionary paths. For
instance, a core consisting mainly of SPL instructions will lead to an evolution involving
large areas crowded with pointers, while a core containing mainly MOV instructions
will lead to a very dynamical behavior concerning the contents of the core, but also to
a core with a small concentration of pointers. In the following, we shall take a look at
three different evolutionary paths that are often observed in simulations with Venus.

If the core contains relatively many jump instructions (e.g. JMP, JMZ, JMN, and
DJN) with immediate amode, the pointers will get caught at these, because an afield
with immediate addressing mode points to its own location in the core. In other words,
a pointer meeting one of these instructions will keep jumping to the same instruction
over and over again, until it is either killed by lack of computational resources, or the
jump instruction is overwritten by noise or a MOV instruction. Of course, such a core
will be quite static with respect to the distribution of different instructions, because
most pointers will be trapped at the jump instructions. Therefore, possible MOV
instructions will only rarely be executed. This kind of core will be referred to as a fixed
point core. This state constitutes a quite trivial form of cooperation. The self-reinforcing
mechanism is characterized by the special mixture of instructions. With the presence
cf noise in this core, a new pointer will occasionally activate a successive number of the
MOV instructions, which, with a probability close to one, will repeatedly copy other
MOY instructions or one of the jump instructions until the new pointer gets trapped
at one of the jump instructions. Here, it may or may not survive, depending on how
many pointers each jump instruction in the neighborhood can carry in terms of compu-
tational resources. Such a fixed point structure is very stable towards perturbations.

As indicated above, another common evolutionary path evolves from a core with
a considerable number of SPL instructions. In such a core, a large pointer
concentration in an area will imply the execution of many SPL instructions, leading to
even more pointers, constituting a positive feedback loop. The pointer concentration
in such areas will increase until lack of resources or the limited execution queue length
puts an end to the growth. These SPL colonies have a more interesting cooperative
Jynamics than the fixed point ccres. The SPL instruction colonies cooperate in the
sense described above: Locally, they distribute pointers to their neighbors, which do the
same, and globally, the colony occupies all available computational resources in terms
of pointers. Sometimes we observe several addressing areas with this kind of behavior.

2



behavior between the areas can be observed. However, because of the lack of MOV
instructions, the contents of the core will be conserved.

A third and even more interesting evolutionary path is that of the MOV-SPL
structure. If a core has a large number of MOV and SPL instructions, a very complex
cooperative structure can emerge. Th# cooperaticn works in the following way: SPL
instructions supply the structure with pointers, both to SPL and MOV instructions. This
is somewhat sim.ilar to their function in SPL colonies, where they distribute pointers to
themselves. We can interpret this as a supply of free energy in thermodynamic terms.
The MOV part of the structure makes sure that both MOV and SPL instructions are
copied, giving the structure the ability to move around in its environment and to locally
explore the spatial resource in terms of addresses in memory. The copying is thereby
also responsible for the growth of the structure. This of course means that the structure
does not have a well-defined genotype in a contemporary biological sense.

It generally takes several thousands of generations from the extermination of
copying loops before the cooperative MOV-SPL structures appear. Typically the system
goes through several phases with relatively large concentrations of instructions other
than SPL and MOV before reaching the MOV-SPL state. Usually a core with a MOV-
SPL structure consists of up to 80 percent SPL instructions, with most other instructions
being MOV instructions; however, the ratio of SPL to MOV instructions may change
during the epoch.

o s B
OAT MOV ADD SUB JmMP

a B = E .
Jnz JMN DJN CMP SPL

Figure 1. The shading used in
core and cellular views.

The MOV-SPL structure is very stable, even though it is constantly subjected to
perturbations, because the MOV instructions copy words continuously. However, the
structure apparently does not change its basic functional properties. If we were to
change the opcode of a word, the functional properties of this word would clearly be
altered drastically. Since this happens all the time in the MOV-SPL structure, the
system has found an area in rule space where it is stable toward~ such perturbations.
Stability in Venus is an emergent property rather than an intrinsic element of the
chemistry, because the elements of which the structures are composed are themselves
very fragile.

In order to illustrate 'he micro- and macroscopic dynamics of the MOV.SPL
structure, we have made tv.v different kinds of projections of the high-dimensional

'
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Figure 2. Core portrait of a MOV-SPL structure. The upper row shows thie opcodes at
addresses 0 through 127, the second row the addresses from 128 through 258, etc. Black
underscores represent pointers. White squares indicate no recent references.
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Figure 3. Core portrait of the structure shown in Figure 2, 100 generations later. Note
how the activity has changed.

ciscrete phase space. The macroscopic dynamics is illustrated in Figures 2 and 3, in
which each opcode in the core is represented by a small bar. The shade of each bar
corresponds to the instruction type as explained in Figure 1. The figures show the
opcodes in the core at two different times in the evolution. Note that in both of the
core views, large parts are white. This merely means that these addresses have not been
referenced for a while; there are no empty words in the core. In Figure 2, we see that
the activity is restricted to higher addresses, whereas in Figure 3, approximately 100
generations later in the evolution, the structure has increased its domain. Note also that
most words are occupied by either SPL- or MOV-instructions. The black underscores
represent pointers.



Figure 4 shows a cellular automata-like view of part of ile core. We have chosen
128 consecutive addresses within the MOV-SPL structure. The opcodes of the words
in this addressing region are shown as horizontal lines at consecutive time points. In
this figure, time increases downwards. The black underscores here also represent
pointers. It is obvious that the microscopic dynamics is very irregular, although :
macroscopic dynamics is preserved. We see how single words cr sometimes consecui.\e
words are overwritten. Also note that once in awkile an opcode different from MOV
or SPL appears, caused by mutations. Groups of pointers suddenly appear or disappear.
In biochemical terms, this structure has an irreguiar metabolism.

The evolutionary stories described here, and additional ones, are discussed in
greater detail by Rasmussen et al. (1990 and 1991).

Figure 4. A cellular automata-like view of a part of the core.
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INFORMATION DYNAMICS OF VENUS

The dynamics of self-programmable matter is generally quite complex, as described
in the previous section, and at the same time simulations are computationally very time
consuming. It is therefore preferable to have some quantitative measures that are easily
computed and that signal changes in local or global dynamics. The calculation of such
measures would enable us to characterize the system’s behavior in terms of well-
established quantities. ,

In order to make sampling frequent and simple, we have computed some simple
information thecretic measures. The chosen measures contain both spatial and temporal
ingredients. Such a combination of spatial and temporal measures is not necessarily
ideal for all applications. It can be required, however, if the ingredients of the computa-

lo



il
tional chemistries in question are such that there exists a preferred direction in space.
To simplify things further, we shall here only consider the opcode, since the functional
properties of a word are mainly determined by this element.

Tte simplest of the measures is the spatial entropy for templates of size one §,.
The spatial entropy is defined as the usual Shannon entropy, calculated from the
probability distribution p, defining the probability of finding an instruction with the
opcode k at an arbitrarily chosen site in the core

9
$1(0)=-Y_ py10g, (P )-

k=0

Another quantity of interest is the mutual information M,. This is defined in terms of
the spatial entrop:es §, and S,

M, ()= 25,(t)-S,(t)

where

9 9
S0)=-3° 3 Piylogy(py))-

k=0 10 .

The interdependence between two events £ 1 B can be measured by the mutual
information. The mutual information can therefore reveal the emergence of correlations
between neighboring instructions and thereby the occurrence of new properties of
interactions. Of course, too large correlations, such as for the pattern "101010101010...,"
are not desirable, since they simply indicate that everything is overly dependent. The
appearance of mutual information of intermediate values is of more interest, since this
could indicate that the system is able to perform non-trivial information processing
(Langton 1990).

The spatial entropy for templates of size two S, is calculated from a probability
distribution p,, which, as we shall discuss shortly, also captures some very important
temporal correlations that determine the system’s potential functional properties. The
probability p,, is defined as the probability of finding an instruction with opcode k at
an arbitrary address n, and an instruction with opcode [ at address n + 1. Note that this
probability is not the same as the prolability of finding opcodes k and / as neighbors.
The reasons for the chosen definition are that pointers are incremented one word after
each execution, anu that the pointers therefore in general travel towards increasing
addresses, with the obvious exception of the jump instructions. This means that chans -«
in S, can signal a change in the typical sequential order of execution of two
neighboring instructions. A change in the typical sequential execution order of
instructions is of considerable interest, since a change in the potential functional
properties can indicate that the system is in the process of changing its global dynamics



through some self-organizing process. If the spatial entropy for templates of size one
S, is approximately constant, the effect of a change in S, will immediately show up in
the mutual information M,.

Experimental Results

All experiments are performed with the parameters and initial conditions discussed
in the previous section. During simulations, the above measures were calculated
frequently. The sampling rate is the same in all computer experin'ents, namely one
sampling every 10 generations. As can be seen from Figures 5 and 6, the moritored
measures change reasonably with this frequency, i.e. there are apparently no sudden
jumps in the measured quantities between samplings.

Figure 5 shows the entropy and the mutual information vs. time for a particular
simulation. In Figure 6a we see the mutual information vs. entropy for the same
simulation, and Figure 6b shows the mutual information vs. entropy for another
simulation. In the following we shall describe these simulations in terms of their
information dynamics.

It appears that the process starts with a drastic increase in the mutual information,
while the entropy is almost unchanged. This is observed in beth Figures 6a and 6b (the
simulation starts in the lower right-hand corner of the plots) and is caused by offspring
of the program initially placed in the core distributing their code. This process does not
influence the opcode distribution very much, since the program has a distribution of
opccdes fairly close to :hat of a randomized core. However, the spreading of this code
influences the spatial correlations in the core and thereby the mutual information. After
about 200 generations the self-replication of programs stops because of malfunction
intrnduced by noise and programs writing on top of each other. Now the entropy starts
fzlling while the mutual information remains in the vicinity of 0.6 bits. This is especially
clear in Figure 6b but can also be observed in Figure 6a as a noisy plateau at the right-
most corner of the figure. The decreasing entropy in this phase is caused by partially
malfunctioning copying loops spreading out a large number of a particu'ar instruction.

For the simulations shown in Figures S and 6a, we see that after about 4,000
generations, the mutual information drops to a level of about 0.2 bits. At the same time
the entropy drops to about 1.5 bits, and some oscillations in both the entropy and the
mutual information are observed, giving rise to a "cloud-like” picture of the information
dynamics in Figure 6a. In this part of the simulation, the core is mainly populated with
MOV and SPL instructions and the pointer density is very high.

The epoch of the MOV-SPL structure continues until r=20,000, where a large
peak in the mutual information reflects a change in the functional properties of the
system (recall the discussion on mutual information in the previous section). From this
point on, the changes in the entropy as well as in the mutual information become less
rapid and exhibit a stepwise character signalling yet another epoch of the system. In
this phase the core mainly consists of MOV-, SPL-, and jump-instructions where most
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of the pointers ars trapped at jump instructions.

In the simulation shown in Figure 6b, the system leaves the plateau of partiaily
malfunctioning copying loops at r=1,100. At this point there is a rise in the mutual
information to a little above 0.9 bits followed by a drastic drop to a value of about 0.2
bits. After this we see the same cloud-like distribution of points in the figure as
observed in Figure 6a. Note that during most of this phase we see rapid changes of the
mutual information, while the changes in the entropy are more moderate. These
changes indicate that some dramatic changes occur, while the opcode distribution is
only affected slightly. This kind of behavior is likely to be caused by MOV instructions
shifting the contents of the core as opposed to the partially maifunctioning copying
loops multiplying single instructions into large areas of the core. These somewhat
organized changes signal that the MOV instructions are activated many at a time,
reflecting some kind of structure in the part of the core responsible for the dynamics.
Finally, at r=32,000 we observe a drop in the mutual information to about 0.1 bits and
the disappearance of the large oscillations in the mutual information. This phase of the
simulation is observed in Figure 6b as a small point dense area just below the cloud-
like point distribution. Compared to Figure 6a this final phase is somewhat more active,
with small oscillations in the entropy and the mutual information. These oscillations are
caused by MOV-instructions continuously re-organizing the contents of the core,
however, in a less organized and dramatic way than in the previous phase of the
simulation.

A rather coarse-grained resumé of the simple information dynamics would be that
the system starts with a high degree of disorder, low complexity, and a high reactive
potential in terms of the initial distribution of opcodes. The system then evolves,
lowering the entropy towards intermediate values, while the complexity increases. Then
the system wanders around in information space in a very complicated manner
according to  : information theoretic measures characterized by sudden changes in
both order ar.. complexity, where all major changes always are associated with changes
in the functional properties. With a time horizon of 50,000 generations, most processes
end up in one of two different dynamical states. One is best characterized as a frozen
state, and the other may be characterized as recurrent or chaotic. The frozen state is
a perturbed fixed point consisting of a variety of jump-instructions which have trapped
the pointers. The fixed point dynamics is in this situation often perturbed by two
factors. One factor is that some of the conditional jump-instructions periodically have
their bfields counted down, allowing crapped pointers to escape. The other factor is the
introduction of random pointers. The overall effect of both of these perturbations is
small changes in the core reflected by small steps both in entropy and mutual
information. This type of dynamics is seen in the simulation shown in Figure 6a.
Another example of this type of dynamics is the collapse, where all pointers disappear.
This also occurs quite often. The terminal state with recurrent dynamics is typically
found in situations where a major part of the core is occupied by either MOV- or SPL-
instructions, The MOV-dominated cores have many MOV-instructions executed at each
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generation chang: 2 content of the core all of the time. This type of dynamics is
seen in the simula nown in Figure 6b. In SPL-dominated cores the composition of
instructions rem: .. virtually constant, whereas the pointer dynamics exhibiis
pronounced intermittent behavior. The SPL-dominated cores of course have maximal
pointer density. The MOV-SPL structure often emerges as a transient structure active
from generation 4,000 until generation 20,000. In rare situations the MOV-SPL
structure can survive even after 100,000 generations. Since Venus is a universal system
it of course supports the thre. main ingredients of computation (recall the discussion
in the previous section): (i) the capacity to store information, (ii) the capacity to
exchange or communicate information, and (iii) the ability to process information in
a non-trivial way. Dynamical systems with these computational capabilities can
apparently, in thermodynamical terms, be characterized as operating in the immediate
vicinity of a phase transition (Langton 1990).

Since the dynamics of Venus changes the instruction contents of the core and
thereby the rules governing the dynamics, the system often changes its computational
capabilities during a simulation. An example is one of the terminal states, the frozen
state (fixed point cores with pointers trapped at jump instructions), very efficient in
storing information. However, the system has in this state, which i» thermodynamical
terms is equivalent 1o a solid state, lost its ability to communicate and process
information. The chaotic or recurrent state (for example cores mainly populated with
MOV instructions) exhibits a pronounced ability to exchange or communicate
information but only a limited ability to perform non-trivial information processing.
This state can be characterized as a fluid state in thermodynamical terms. The MOV-
SPL structure is from a computational point of view more interesting. It is clear that
the MOV-SPL structure does not have a well-defined genotype, and consequently it
does not store information in the usual sense of data storage (recall (i)). However, it
is also clear from the previous analysis that the macroscopic dynamics is preserved. The
system therefore, through some complicated coding, stores its phenotype rather than
its genotype. With respect to (li) and (iii), it is fairly obvious that non-trivial
computations are performed, and that information is being communicated by the MOV
instructions, within the structure itself.

Scaling of Correlations

One can generalize the mutual information between neighboring words to
investigate lnng-range correlations. When looking at long-range correlations, almost all
temporal effects are removed. Changes in the functional properties/potential are
certain to have taken place if long-range correlations should appear or disappear.

In the following, we shall discuss the simulation shown in Figure 5 from this point
of view,

At time =5,000, an interesting phenomenon is observed in the simulation
concerning the spatial correlations. Here, the mutual information of opcode, amode,
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and bmode versus distance all decay smoothly. If we try to fit a power law to the decay,
we can describe the decay by a scaling exponent a

Mn)=M(1)n"".

What is particularly interesting here is that all three decays can be characterized by the
same scaling exponent, @ =0.4. One might suspect that this is always th. .ase since the
three elements of a word cannot be altered, but for example at r=1,000, we find three
different scaling exponents, ranging from 0.64 for the opcode to 1.1 for the amode. At
later stages in the evolution, e.g. at time ¢=20,000 and ¢r=21,000, the exponents differ
by more than 30% from each other In Figure 7, the decay of correlations for the
opcodes is shown.
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Figure 7. The figure shows the decay of correlations between opcodes as computed by
the mutual information at time r=5,000.

After approximately 20,000 generations, both the spatial entropy S, and the mutual
information A/, have maxima. Since both S, and M, change rapidly around this time,
as can be seen in Figure S, we expect to be able to find some indication in the long:
range correlation. At time (= 19,000, we see from Figure 8 that there is a smooth decay
of M, to values below 0.01 bit. The same is observed at time t=21,000 (see Figure 8c),
except that the value of the mutual information here slightly exceeds 0.01 bit. If we
look =t the correlations at time (= 20,000 (Figure 8b), several peaks are obhserved. At
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distances near S5 and 100, significantly greater values of the mutual information than
in the surroundings can be seen, indicating long-range correlations. Since long-range
correlations indicate some relationship between sites in the core separated with some
distance, the emergence of such correlations signals that one or more MOV-instructions
move the contents of the core that specific distance. Thus, the long-range correlations
can be used to detect activity of one or more such MOV-instructions, enabling us to
detect changes in the core that have only insignificant influence on the total distrioution
of opcodes, i.e. the entropy.

Yet another way of describing coherence in the core is by means of correlations
defined by Markov matrices. In the case of opcode we can define a Markov matrix
determining the probability Pjj of opcode i at address n is followed by opcode ; at
address n+1. Actually, such a matrix is intimately related to the spatial entropy S,.
Furthermore, as we mentioned earlier, such Markov matrices can be used for supplying
the system with a reactive potential, instead of using a small self-replicating program,
simply by generating the initiai conditions on the basis of a set of low order Markov
chains. We have calculated how the Markov chains determining the correiations
between an opcode at address n and an opcode at address n+ 1 actually look at the
sampling times corresponding to Figure 8. Figure 9 shows 3-D pictures of these Markov
matrices. Note that the figure shows log(N,-l-). where Nij is the number of occurrences
of opcode j following opcode i. Note that pj can readily be calculated from Nii‘

In Figure 9a the strong correlations between subsequent MOV- and SPL.
instructions indicate that the core is mainly populated with these instructions at
t=19,000. At r=20,000 several smaller peaks appear indicating fluctuations introducing
JMZ and DJN instructions. This signals that an instability is underway leading to an
increased concentration of instructions other than the ones ruling the cnre earlier.
Finally, at +=21,000 a new set of high peaks appears revealing a strong presence of
JMZ. The instability has thereby changed the macroscopic composition of the
instructions. Note also that the small peaks indicating the emergence of DJIN
instructions have vanished. The DJN fluctuation has died out. The transition occurring
in the system around ¢ =20,000 indicated by the information dynamics is thereby also
reflected in the opcode correlation matrices. In addition these matrices indicate which
instructions are involved in the transition and which new instructions emerge in the new
epoch.
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DISCUSSION

Of the information processing {=atures associated with living systems, the ability
of systems to alter themselves through an introduction of novel properties is what has
made biological evolution possible. Novel properties are introduced through changes
in the biomolecules that constitute the organisms. We refer to systems with these
properties as being self-programmable. To investigate the self-programming properry
of living systems, we have designed a system far simpler and more tractable than
contemporary biomolecular systems. Despite its simplicity, our system has the same
fundamental constructive properties as contemporary biomolecular systems. We have
seen how this parallel von Neumann based self-programmable system is able to
successively develop novel functional properties and how comgplex cooperative structures
spontaneously emerge in the system. Frozen accidents determine thes different
evolutionary paths in the system and thereby the particular details of the emerging
structures. We have discussed cooperative properties of the MOV-SPL structure, of the
SPL colonies, and of the jump cores.

These macroscopic cooperative structures are spontaneously generated in the
computational system. They emerge in a similar way as macroscopic dissipative
structures do, in, for instance, physico-chernical systems. A thermodynamical
interpretation of the computational system yields an equivalence between the flux of
free energy and the flux of computatianal resources (executions per iteration), and an
equivalence between the microscopic degrees of freedom in the physico-chemical
system and all the possible functional interactions in the computational system. A
notable difference is, however, that our macroscopic computational structures change
even with a constant pumping (executions per iteration). Due to our system's self-
programming properties it does not stay in any fixed macros.opic pattern, as for
instance a Raleigh-Benard convection or the chemical reaction waves in a Belousov-
Zhabotinski reaction do. Our system has in addition the property biological systems also
have: it can change itself and thereby undergo development.

How close the details of the processes and the details of the emerging cooperative
structures are to evolutionary processes in biological systems and to the structures
underlying contemporary living systems we cannot say. The uetailed properties of
biological evolution as well as the fundamental dynamics underlying life itself are yet
unknown. However, our definition of constructive, or self-programmable, dynamical
systems has allowed us to start a systematic investigation of truly evolutionary processes.
We have freed our formal tools from any predefined evolutionary possibilities. Our
system picks its own evolutionary route and constructs its own functional properties.
This is in contrast to most formal approaches discussing evolutionary processes. A
formal discussion of self-programmable systems is found in Rasmussen et al, (1991).
Another constructive system based on the A-calculus is discussed in Fontana (1991).

One of the major problems associated with self-programmable systems is their
complexity. Since the functional properties of such systems depend on their dynamics,



any characterization of dynamics as well as functional properties is difficult. We would
of course like 10 be able to detect when novel furctional properties are introduced and
how such new properties are characterized. It turns out that the Shannon entropy, the
mutual information, and Markov chains constructed from correlations, in particular
when combined, can be used for that purpose.

The simultaneous calculition of S,and S, (or M) is an efficient way to determine
when a complex system is in a quasi-steady state and when the system is in a transiticn.
An alternative is to compare the states of the system at subsequent generations, which
perhaps is a little faster. For large systems such as Venus, this requires a considerable
amount of storage and retrieval of data, which can be rather time consuming. The
calculation of the Shannon entropy S, alone s, of course, fast, but if the instruction set
includes an instruction to exchange the contents of two words (which is an instruction
actually found in most moder microprocessors), then the execution of a large number
of exchange instructions would in general alter the functional properties drastically,
while S, would remain constant. In this case calculation of the .nutual information
captures that something happens. Another example of the mutual information changing
while the entropy is virtually constant occurs when the small self-replicating programs
distribute their code into the core.

By also considering long-range correlations and the Markov matrices we obtain
more detaiied information about the dynamics of the system. The emergence of long-
range correlations indicates changes in the local interdependence of the core.
Similarities and differences in the scaling exponents describing the decays of the
correlations of the different fields as a function of distance can be used to uncover
details about the dynamics of the individual fields. Finally, the Markov matrices reflect
instabilities and fluctuations in the opcode distribution, and they in particular signal
which opcodes are involved in the transitions of the system.

Obviously, these measures are not sufficient 1o characterize the dynamics in all
details, and they do not uncover all the interesting details of the emerging cooperative
structures. However, the proposed measures have the advantage of being very
accessible from a computational point of view, Several other measures have been
proposed, but they are eithe very complex 10 compute or cannot be computed at all.
Some of these measures are discussed in Bennett (1988 and 1989).
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